電子回路の基礎 (初版) 正誤表

42ページ 図 2.17

(誤) 入力側の制御電圧源 (βv_0) の極性 (-,+)

(正) (+, -)

2006.12.18

33ページ 12 行目

- (誤) 式 (2.27) より
- (正) 式 (2.27) に対応して

33ページ 14 行目

- (誤)展開係数は、
- (正)展開(2.28)に対する係数は、式(D.30)から、

33ページ 14 行目

- (誤) q_0
- $(\mathbb{E}) q_0/2\pi$

33ページ 式 (2.33)

- (誤) q_0
- (正) $(q_0/2\pi)$

33ページ 式 (2.34) の 2 つの等号

- (誤) =
- $(\mathbb{E}) = \frac{1}{2\pi}$

33ページ 問題 2.6

- (誤) $e_0 e^{j\omega_0 t}$
- $(\mathbb{E}) e_0 e^{j\omega_0 t} + \text{c.c.}$

33ページ 問題 2.6

- (誤) 互いに
- (正) (因子 2π を除いて) 互いに

34ページ 問題 2.7

- (誤) $\mu T^{-1} e^{-t/T}$
- $(\mathbb{E}) U(t)\mu T^{-1}e^{-t/T}$

35ページ 10 行目

- (誤) (1.10)
- (正) (1.12)

41ページ 下から 4 行目

- (誤) 信号に
- (正) 信号の

50ページ 第2パラグラフ

- (誤) キャリア数の見積りは間違い.
- (正) 付録 G の結果を用いるべきである. (訂正 方法は検討中.)

51ページ 9 行目 (索引, その他も)

- (誤) 真正
- (正) 真性

102ページ 図 5.9

- $(誤) v_C$
- (正) 破線のグラフのそばに移動

105ページ 1 行目

- (誤)電流変化しない
- (正)変化しない

105ページ 4 行目

- (誤) 節のタイトル 5.2.4 ベース電圧バイアス
- (正) 106 ページ 10 行目「すぐ思いつく」の直前に移動する. (これに伴って, 節の番号 **5.3.2 5.3.5** が **0.0.1** ずつ後ろにずれる. 目次も要訂正)

105ページ 下から 3 行目

- (誤) $x + \Delta a$
- $(\mathbb{E}) x + \Delta x$

106ページ 式 (5.28)

- (誤) 右辺第2項中の, x を
- (正) すべて y に変える.

111ページ 式 (5.49) の直前の式

- (誤) $\exp(v_{\rm B} v_{\rm E}/V_{\rm T})$
- $(\mathbb{E}) \exp[(v_{\rm B} v_{\rm E})/V_{\rm T}]$

113ページ 式 (5.56)

- (誤) 最右辺の先頭に
- (正) V_{CO} + を挿入する.

113ページ 式 (5.57)

- (誤) = 0
- $(\mathbb{E}) = V_{\text{CQ}}$

118ページ 式 (5.74) の最後の因子

- $(誤) \frac{r_{\rm C}}{(1-\alpha)}$
- (正) $(1-\alpha)r_c$

122ページ 式 (6.7)

- (誤) sin
- (正) cos

124ページ 図 6.4

- (誤) 2 箇所追加
- $(\mathbb{E}) + V_{\rm CC}$

137ページ 下から2行目

- (誤)内部コンダクタンスを大きく
- (正) 内部コンダクタンスを小さく

139ページ 図 7.7

- (誤) Q_1 の左にある i_1 と矢印
- (正) R の右に移動

140ページ 6 行目

- (誤) $i_2 = [1 (1 + \beta^{-1})]i_E$
- $(\mathbb{E}) i_2 = [1 (1 + \beta)^{-1}]i_{\rm E}$

142ページ 図 7.11

- (誤) i_{C2} が指すグラフが異なっている.
- (正) 右下がりのグラフを指すべき.

151ページ 1 行目

- (誤) amplifiler
- (正) amplifier

153ページ 図 8.3

- (誤) 4588
- (正) 4558

159ページ 問題 8.5

- (誤) 全文訂正
- (正) 積分/微分回路に対して、図8.9に相当する 図を描き、それぞれの回路が動作する周波数範 囲を調べよ.

170ページ 問題 9.2

- (誤) G(s)
- (正) G(s) (次元は抵抗)

174ページ 図 9.9

- (誤) 位相のグラフ (右の図) の縦軸
- (正) $0, -\pi/2, -\pi$ の順

184ページ 式 (10.22)2番目の式

(武)
$$U(p) = 2\left(-\frac{p^2}{2} + \frac{p^3}{3}\right)$$

(正) $U(p) = \left(-\frac{p^2}{2} + \frac{p^3}{3}\right)$

$$(\mathbb{E})\ U(p) = \left(-\frac{p^2}{2} + \frac{p^3}{3}\right)$$

199ページ 式 (10.51)

- (誤) v_i
- (\mathbb{E}) $-v_{\rm i}$

202ページ 2 行目

- (誤) $v_A = (R_1V_0 + R_2v_I)(R_1 + R_2)$
- $(\mathbb{E}) v_{\rm A} = (R_1 V_0 + R_2 v_{\rm I})/(R_1 + R_2)$

232ページ 式 (12.43)

232ページ 式 (12.44) 2つ目の式

- (誤) $\sum_{n=0}^{\infty} P(n)n$ (正) $\sum_{n=0}^{\infty} P(n)(n \langle n \rangle)^2$

232ページ 式 (12.48) の 3 つ目の式の被積分関数

- (誤) $R_i(\tau)$
- (正) (削除)

269ページ 5.3

電子回路の基礎 (初版 2 刷) 正誤表

2006.12.18

83ページ 式 (4.38) 右辺 1 行目

- (誤) z < -1
- $(\mathbb{E}) z > -1$