コイルの自己共振

北野正雄

平成10年 10月 20日

1 モデル

コイルの浮遊容量をモデル化するために、図のような等価回路を考える。この回路のリアクタンスは

\[
X = \frac{\omega (L_1 L_2 - M^2) \left(\frac{1}{C_1} + \frac{1}{C_2} \right) - \frac{1}{\omega C_1 C_2} (L_1 + L_2 + 2M)}{\left(\frac{L_1}{C_1} + \frac{L_2}{C_2} \right) - \omega^2 (L_1 L_2 - M^2) - \frac{1}{\omega^2 C_1 C_2}}
\] (1)

簡単のために、コイルの中点にタップがあるものとする。すなわち，

\[
L_1 = L_2 = L
\]

コイルの全インダクタンスは

\[
L_0 = 2L + 2M
\]

である。

また、コンデンサも全キャパシタンスを \(C \) として，

\[
\frac{1}{C_1} = \alpha \frac{1}{C}, \quad \frac{1}{C_2} = (1 - \alpha) \frac{1}{C} \quad (0 \leq \alpha \leq 1)
\]

とおく。

\(L_1 + M \)

\(L_2 + M \)

\(C_1 \)

\(C_2 \)
2 独立コイルの場合

\(M = 0 \) とおくと、式 (1) より、

\[
X = \omega L f(\xi), \quad f(\xi) = \frac{2\alpha(1-\alpha) - \xi}{(\alpha - \xi)[(1-\alpha) - \xi]}, \quad \xi = \omega^2 LC
\] (2)

直流付近 \((\xi \ll 1) \) では、\(X \sim 2\omega L = \omega L_0 \) が成り立っている。並列共振点 \((f(\xi) = \infty) \) は、\(\xi = \alpha, \xi = 1-\alpha \), 直列共振点 \((f(\xi) = 0) \) は、\(\xi = 2\alpha(1-\alpha) \) で与えられる。共振点を \((\xi, \alpha)\)-平面に描くと、図のようになる。\(\alpha = 1/2 \) では、共振点が縮退して、単独の並列共振点のように見える。コンデンサの不均衡の大きい \((\alpha \geq 1/2 \) くらけ) と並列共振点の 1 つが低い周波数に現れて、コイルとして利用できる周波数範囲が制限されることがわかる。

3 密結合の場合

\(M^2 = L^2 \) とすると、式 (1) より、

\[
X = \omega L g(\xi), \quad g(\xi) = \frac{4\alpha(1-\alpha)}{\alpha(1-\alpha) - \xi}, \quad \xi = \omega^2 LC
\] (3)

この場合は、並列共振点がつねに 1 つしか存在しない：\(\xi = \alpha(1-\alpha) \)。コンデンサの不均衡の影響は \(M = 0 \) の場合より小さい。

4 一般の場合

\(M = \beta L \quad (0 \leq \beta \leq 1) \) とおいて、同様の計算を行なえばよい。